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Abstract. The introduction of properly defined magnetic and electric circuits in Fourier 
space can give a new powerful technique in studying problems of electromagnetic waves, 
and a novel view of the behaviour of these waves, in different applications. Using Parseval’s 
identity theorem, one is able to obtain all the possible information for electromagnetic 
waves by its spatial Fourier transforms. Thus inversion in real space can be avoided 
completely. 

In this paper we present the theory and examples of this new technique in various 
applications of electromagnetic waves. The coincidence with already existing theoretical 
formulae or results is evidence that the proposed method is completely equivalent to the 
classical formulation. But, due to its simplicity this technique could be very useful in 
studying electromagnetic field problems. 

1. Introduction 

Spatial Fourier transforms, combined with the derived circuits, have been extensively 
used to study induction problems in low-frequency applications where the displacement 
currents are omitted leading to the so-called quasi-stationary formulation (Papageor- 
giou 1979, Freeman 1968, Freeman and Papageorgiou 1979). 

In this paper for higher frequencies, time and space Fourier transforms lead to 
the idea of introducing two separately excited circuits, one electric and the other 
magnetic, which are related to the already existing ideas of transverse magnetic and 
electric fields, respectively. The circuits are not interlinked. The complete solution 
of the derived circuits can give all the Fourier transformed field components and thus, 
by inversion, the real space field components can be calculated. Using Parseval’s 
identity formulae, real and reactive powers and radiation patterns can be evaluated 
in Fourier space. Also, using standard circuit properties, the main electromagnetic 
field properties can be derived. Resonance in these circuits, for example, is related 
to surface waves in dielectric layers. Itoh and Menzel (1981) proposed similar ideas 
for the study of microstrip radiation problems. 

In 0 2, the Fourier transform method and the basic properties of the derived electric 
and magnetic circuits are studied. In 0 3 the basic electric and magnetic excitations 
in Fourier space are also given. In 0 4 Poynting vector ideas combined with properties 
of Parseval’s identity are used to express power in Fourier space. The radiation pattern 
function for the far field can be also expressed in Fourier space. Simple examples for 
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the verification of the method are given. Finally, in 9 5 the surface modes propagating 
inside a dielectric slab are shown to be related to conditions of resonance in the 
corresponding equivalent circuits. 

2. Maxwell equations, Fourier transforms and equivalent circuits 

Let us consider a homogeneous dielectric layer with electromagnetic parameters E ,  P 
and a. The structure is shown in figure 1; the z axis is normal to the layer boundary 
planes. The electric and magnetic fields E, H, D, B inside the layer are generally 
functions of the coordinates ( x ,  y, t) and time ( t ) .  

In a case of a monochromatic wave every field component A(x, y, z ,  t )  is given by 

A(x, y, z ,  t )  = Re[A(x, y, z )  e'"']. (1) 
Hence its spatial Fourier transform along the x and y axes will be 

m 

-m 

and inversely 

-cc 

Fourier transforming the Maxwell equations, the following system of six equations 
is obtained. For the sake of simplicity, we will use the symbol A for the Fourier 
transform of the field component A. 

a f i x  ia r) B, = (a   WE)^, ip  aH, 
-B, --= (a +iwE)& 
P az az P 

iaf iy  - ipfix = -+ iw ~5~ (: ) 
a&. ia 

D, = -iwpfiy 
az E 

ip  aB,- -D, -iwpfix 
E az 

iaE, - ipEx = -iwEz. 

(4) 

From Maxwell's equations, on a plane boundary between successive planar layers the 
following components are continuous: 
(a) the tangential electric and magnetic field components E,, E,, H,, H,  and 
(b) the normal components of the vectors aB/at and 1 +aD/at. 
Thus, in Fourier space the following components will also be continuous: E,, ,??y, fix, 
fiv and ius,, (a/& + i w ) ~ ,  respectively. 

Of course the boundary must be free, i.e. electric or magnetic currents or charges 
must not exist on it. 

We define the following functions in Fourier space: 

Magnetic voltage = VM = afi, + p H y  Magnetic current = IM = usz = aHy - pH,  
Electric voltage = VE = aE, +PE, 

Electric current = IE = (w - iv/&)Dz = pl?, - asy. 
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t’ 

Figure 1. A planar layer with a stationary frame of reference ( O x y z ) .  

These are the fundamental magnitudes for the construction of the equivalent circuits. 
These are functions of (a, p, z )  and their units are A, V and V, A, respectively. By 
inversion the field components can be expressed in terms of VM, IM, VE, IE. 

The previous system (4) can now be written as follows: 

avM/az = -(y2/iWp)IM aIM/az = -iwp vM (6)  
and 

a vE/az = - [ y 2 / ( u  + ~ O J E ) ] I ~  aIE/az = -(U + iwe) VE (7) 

where 
2 2 2  2 y = a  + p  -epw +ipuw. 

The expressions (6)  and (7) are the differential equations of a transmission line 
which is magnetic or electric, respectively. Both lines have the same propagation 
factor y (with Re( y )  L 0), but different characteristic impedances, zM = y/iwp, and 
zE = ?‘ / (U  + i w ) .  These lines are not interlinked and can be treated separately. 

An equivalent circuit of such a line is given in figure 2, where 

z s  = z tan,h(yd/2) zp = z/sinh(yd) (9 )  

and z ,  y, d are respectively the characteristic impedance, the propagation factor and 
the thickness of the layer. 

By definition, the voltages and currents at the interfaces are continuous, so the 
problem of successive planar layers leads to a connection of their equivalent magnetic 
and electric circuits, in cascade. 

+T2 1 

Figure 2. The equivalent T-circuit of an electric line of length d.  
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3. Boundary conditions and excitation sources 

Let us now examine the case of a boundary z = constant where a surface current sheet 
exists on it with density j .  If HI and Hz are the magnetic fields just above and below 
the boundary and n is the normal unit vector, the following jump condition is true 
at the boundary: 

n x ( H z - H 1 ) = j .  (10) 
Thus, Fourier transforming and rearranging terms, the following algebraic relation 
holds: 

(11) 

where fix, a,,, iX, i”, are functions of fy and p. Hence the function VM = ai”, -pix 
represents a magnetic voltage source connected between the two magnetic lines 
separated by the previous boundary. 

( afix + pfi& - ( afix + pGy) 1 = aiy - p;* 

12 I 
S u r f o c e  e lect r ic  c u r r e n t  n2 

Figure 3. Two successive layers with a current sheet on their boundary surface, and their 
equivalent magnetic circuit in Fourier space. 



Circuits in Fourier space for study of (“ fie ids 2573 

Let us now consider a boundary pIane charge sheet with surface charge density 
ps (x ,  y). If D J  and Dr,2 are the electric displacement normal components just above 
and below the boundary, the following jump condition is true at the boundary: 

Dr, i -D2,2=ps(~ ,  y).  (12) 

Fourier transforming and using the definition for the electric current (for (T = 0), the 
following equation holds: 

I E . ~  - IE,2 = WfiS. (13) 

Hence the function IE = qfis represents an electric current source connected in 
parallel between the two electric lines separated by the previous boundary. In general, 
a current sheet with current density components Jx(x ,  y),  J y ( x ,  y )  has also a charge 
density p s ( x ,  y). 

The continuity equation after Fourier transforming becomes 

ff4, + pPy = -W$s (14) 

where jx, .f,, f i s  are functions of a and p. Hence the function IE = --(a.fX +p.fy) 
represents, as stated previously, an electric current source. 

Let us now consider the case of a Hertz infinitesimal dipole of length Ai(Ax, Ay)  
and current I, tangentially oriented on a boundary plane at the point (x, y).  It can 
be easily shown that it is equivalent to a surface current sheet, so that this tangential 
dipole can be simulated by a voltage magnetic source together with a current electric 
source. 

A thin filamentary planar current conductor, on a plane boundary, can be 
considered as the distribution of Hertz dipoles, hence is equivalent to a voltage 
magnetic source 

V M  = I ( x ,  y )  exp(iax +ipy)(a dy - p  dx) (15) I, 
and to a current electric source 

IE = -I, ~ ( x ,  y )  exp(iax + ipy)(a dx + p  dy). 

The integrals are calculated along the length 1 of the conductor. 
As expected, the second integral for a closed thin filamentary loop with constant 

current is zero. Using the duality principle we can prove that a surface magnetic 
current sheet with components in Fourier space J M , ~  and J M , ~  will be represented by 
a voltage electric source 

and a current magnetic source 

I M =  - ( a - f ~ , ~  +PQM,Y). (18) 

For the former case of a magnetic current sheet there is an important application, the 
calculation of the equivalent excitation of a normal Hertz electric dipole at a plane 
boundary. As is already known this normal infinitesimal dipole of length AI and 
current I is electromagnetically equivalent to a small magnetic current loop with 
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surface As and a constant magnetic current 

I,= I A I / E W A S .  (19) 

Combining the previous ideas, we conclude that an electric normal dipole will be 
equivalent to an electric voltage source given by 

VE= ( I A I I E o A s )  exp(iax +ipy)(a dy - p  dx) (20) 

where the integration takes place on an infinitesimal loop with area As. In order to 
proceed further we can consider a small square loop with side Ax. Hence, integrating, 
the following result is derived: 

(aZ + pz). (21) 
. IAl sin(aAx/2) sin(pAx/2) 

VE = 1- 
EW (aAx/2)(PAx/2) 

Hence for all wavenumbers where &Ax12 and pAx/2 are very small compared with 
unity 

VE = i ( lAl /m)(aZ + pz). (22) 

4. Calculation of the radiation pattern 

As a first application of the proposed technique let us give formulae for the calculation 
of the radiation pattern in Fourier space. Rhodes (1966) has tackled the problem in 
a similar way for planar radiating structures. 

The first step is the evaluation of the power crossing a plane normal to the z axis, 
in terms of Fourier space components. This power can be calculated in terms of a 
Poynting vector, as 

m 

S =  [I ( E x H ) ,  dx dy. (23) 
-03 

For a monochromatic excitation, the total complex power s is given by 
02 

$ = P + i Q = i  ( E x H * ) , d x d y  II 
--a0 

where P =real power, Q =reactive power and the symbol * means conjugate of a 
complex number. Using Parseval’s identity theorem, we can evaluate the same power 

in Fourier space, as follows: 
m 

-m 

where the components Ex, E,,, fi:, fi: are functions of a and p. If the field components 
are expressed in terms of V,, VE, IM,  IE 

(26) s = SE + s, 
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where 
OD 

-W 

and SM is defined analogously. 
Let us consider that above (or below) the plane under consideration, there is a 

homogeneous infinitely thick layer, which is represented by its characteristic imped- 
ances in both electric and magnetic equivalent circuits, i.e. 

Z E  = y/(u +i&o) ,  zM= y/iog. (28) 

If IE and I M  are the electric and magnetic currents respectively, the power which 
crosses the plane can be written as 

m 

We consider first the case of an infinitely thick layer without ohmic losses (CT = 0, 
everywhere); in that case 

= (A - K ~ ) ~ / ~  K2  = 0 2 g ~  A 2 = a 2 + p 2  K , A s O .  (30) 

If now A Z- K, y is real, zE and zM are pure imaginary and is pure imaginary. This 
means that in this case, there is no radiated power in the space. On the other hand, 
if A < K, then y = i(K2-A2)”2 = iC (pure imaginary), zE, tM are reals and 3 is real. 
In this case, all the power is radiated in the space. 

Considering now a lossy medium ( c r > O ) ;  zE and zM are for every value of A 
complex numbers and thus P, R exist for all values of A .  But, again for the usual case 
when U is relatively small (i.e. U << E O ) ,  the main part of is real for A < K, while the 
main part of S is imaginary for A Z- K. 

The power formula can give the radiated and non-radiated powers respectively, 
in the whole space due to a general excitation. With a simple transformation, one is 
able to obtain the radiation pattern in the far field. A harmonic plane wave with 
wavenumber K, and wavenumbers along the x and y axes a and p respectively, will 
have a propagation vector K which will be directed along the cp, 8 directions in 
spherical coordinates, shown in figure 4. The following formulae are true: 

a = K  sin 8 cos cp (31) 

The real power P which is calculated by the expression (29) can now be written as 

p = K sin 8 sin cp c = K  cos 8 and A = K  sin 8 s K .  

But, as is well known, the factor sin 8 d@ d q  is the differential surface element 
along the q and 8 directions of a unit spherical surface. Hence, the rest of the 
integrand of (32) represents the radiated power per unit surface along the directions 
cp and 8. Thus the radiation pattern function can be evaluated directly from Fourier 
space components, without any inversion to the real space. 
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Figure 4. The direction vectors of a harmonic wave in orthogonal coordinates and in 
spherical coordinates. 

For the verification of the method we will apply the above theory to well known 

( a )  Hertz dipole in the air 
cases. 

The configuration and the equivalent electric circuit of the problem are shown in 
figure 5 .  The equivalent electric source is given by 

VE(a, p )  = i Iz (a2+p2)Al /w (33) 

and 

z A I R =  V/im 

so that the equivalent electric current IE(a, p )  can be evaluated as 

I E  = -IzAl(a2 +p2)/27. (34) 

Using now expression (32) for the radiation pattern, we have 

and finally 

JK~(I,A~)’ sin2 e 
3 T 2  pR(e)  = 

where J is the free-space impedance. 

(Jordan and Balmain 1968). 

We divide the electric dipole (figure 6 )  into an array of Hertz dipoles, which are 
oriented along the z axis. Each small dipole has a current I ( z )  which will be given by 

This result is in agreement with the existing theory of Hertz dipole radiation 

( 6 )  Dipole radiation inside the air 

I,,, sin[K(h - z ) ]  O s z s h  
-h s z  S O .  

(37) 
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Figure 5. Electric dipole inside air and the Figure 6. A long thin dipole inside air and the 
equivalent electric circuit in Fourier space. equivalent electric circuit in Fourier space. 

Then the electric voltage VE(a, p )  of the equivalent circuit (figure 6) can be written as 

where 

y = (A - K2)1’2 = iK cos e for A s K. (39) Y 
ZAIR = - isw 

After some straightforward algebra, we finally have 

2iK[cos(Kh cos e)  - cos(Kh)] 
I m  s w  V d a ,  P )  = 

Hence, the current IE(a, p )  in the equivalent electric circuit (figure 6) will be given by 

v ~ ( ~ ,  p )  - -K[COS(K~ COS e )  - C O S ( K ~  )um IE(a, p )  = 2ZAIR - 
Y 

As a direct result, the radiation pattern function will be given by 

Expression (42) is in agreement with existing results (Jordan and Balmain 1968). 
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5. Evaluation of the surface modes for a dielectric slab waveguide 

As a last application of this technique, we will evaluate the surface propagating modes 
of a dielectric slab waveguide. This problem has been solved in different ways (Unger 
1977). 

The proposed method provides another physical view. The configuration and its 
equivalent circuits are shown in figure 7. The dielectric slab separates two media with 
different electric parameters and the same magnetic permeability po. We can prove 
that 

Y1 Y 2  
Z1,E = islw Z2,E = G 

Y 1  ~ ~ , ~ = - t a n h  (7) - z P , E = -  
1EW iew sinh(yd) ’ 

(43) 

also 

A-a-+ 
Magnetic 

Figure 7. ( a )  A thin layer of thickness d, separating two different electromagnetic media. 
( b )  The equivalent electric and magnetic circuits. 
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Let us examine what will happen as the wavenumber A takes values from 0 to Co. 

(a) A .sKZSKl<K. 
In this case, the impedances zlE, zZE, zlM, Z2M of the equivalent circuits (figure 7) 
become real, while zSE, zPE, z p M ,  zSM are imaginary. The physical conclusion is that 
the electromagnetic energy is radiated into the surrounding media 1 and 2. 

z ~ E ,  z ~ M  are now real, while the rest impedances are pure imaginary. Thus, the 
electromagnetic energy is radiated to the medium 1. 

All impedances of the equivalent circuits are pure imaginary. As is obvious Z I E ,  

z ~ E ,  z ~ M ,  zZM, zPE, zPM are of capacitive type, while LSE and zSM are of inductive type. 
In this case, radiation in the surrounding medium is excluded. 

All impedances are again pure imaginary, but all of them are of capacitive type. 
Radiation in the surrounding medium is also excluded. 

Case (c) is important, because resonances can occur in the electric or magnetic 
equivalent circuits. The physical conclusion is that whenever a resonance occurs, then 
a surface wave (TM or TE) is propagated inside the dense layer separating the two 
optically lighter media. Hence, the eigenvalue equation which gives the surface 
propagating modes of this structure can be obtained from the resonance conditions 
of the equivalent circuits. 

Taking the electric circuit which gives the electric type surface modes, the resonance 
condition becomes 

(b) K2SA SK1<K. 

(c) KzCKI<A CK.  

(d) K2 C K1< K < A. 

A more compact expression can be obtained as 

where 

This gives the condition for TM modes. An analogous formula can be obtained for 
the TE modes. 

The results derived by this method are in agreement, as expected, with already 
existing ones (Unger 1977), but this new technique provides a different view for the 
problem of surface waveguiding structures. 

6. Conclusions 

The method of spatial Fourier transforms and equivalent electric and magnetic circuits 
is shown to be a powerful mathematical tool for the treatment of electromagnetic 
field problems. It can also give a complementary physical view for the respective 
electromagnetic problems. 
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As became evident, the inversion into real space is possible but not necessary, 
because the important features of electromagnetic field problems can be calculated 
in Fourier space using the Parseval identity theorem. The method can be applied in 
a large variety of electromagnetic field problems, and although it is related to planar 
geometries, an extension to other geometries, such as cylindrical, is always possible 
(Papageorgiou et a1 1981). 
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